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We present a theoretical study of the spin-transfer torque vector and the tunneling magnetoresistance �TMR�
for symmetric magnetic tunnel junctions �MTJ� using the single-band tight-binding model and the nonequilib-
rium Keldysh formalism. We provide a comprehensive analysis of the effect of band filling and exchange
splitting of the FM leads on the bias behavior of the spin-transfer component, T�, in the plane containing the
magnetizations of the two magnetic layers, and the fieldlike component, T�, perpendicular to this plane. We
demonstrate that both components of the spin torque and the TMR can exhibit a wide range of interesting and
unusual bias behavior. We show that T��V� satisfies an expression involving the difference in spin currents
between the ferromagnetic �FM� and antiferromagnetic �AF� configurations, which is general and independent
of the details of the electronic structure. The spin current for the FM �AF� alignment is shown to have a linear
�quadratic� bias dependence, whose origin lies in the symmetric �asymmetric� nature of the barrier. On the
other hand, the bias dependence of T� is quadratic with d2T� /dV2�0, and it can change sign at finite bias.
Finally, we show that the exchange splitting and band filling have a large effect on the bias dependence of the
TMR.
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I. INTRODUCTION

In recent years spin-dependent tunneling in magnetic tun-
nel junctions �MTJ� has become the subject of great interest
because of the richness in physical properties it exhibits, and
its promising applications in magnetic read heads in com-
puter hard drives, nonvolatile magnetic random access
memories �MRAM�, and magnetic sensors.1–3 The MTJ, con-
sisting of two ferromagnetic �FM� metal electrodes separated
by a thin nonmagnetic insulating barrier �B�, exhibit the phe-
nomenon of tunneling magnetoresistance �TMR�, where the
electrical resistance and, hence, the tunneling current depend
strongly on the relative orientation of the magnetizations of
the electrodes, which can change by a relatively low applied
magnetic field. The TMR ratio is defined as, TMR
�

�IFM−IAF�
IAF

, where IFM and IAF are the junction currents in the
FM and antiferromagnetic �AF� configurations, respectively,
where IAF� IFM. Recent experiments4–6 have shown that the
TMR in crystalline Fe/MgO/Fe tunnel junctions has room-
temperature values that can exceed several hundred percent,
as theoretically predicted.7,8 Experimental results, which
consistently show a decrease in the TMR as a function of
bias, are controversial and no consensus has been reached on
the physics behind them.9–14 Several mechanisms have been
proposed to explain this behavior, including inelastic spin-
flip scattering processes by interfacial magnon
excitations,15,16 spin-independent two-step elastic tunneling
via defect states in the insulating barrier,17 voltage-dependent
density of states at the Fermi level,18 and the electronic struc-
ture of the FM electrodes.12,13,19,20

While in MTJ structures the relative orientation of mag-
netizations affects the flow of spin-polarized current,
Slonczewski21 and Berger22 independently predicted a re-

verse effect. Namely, the flow of spin-polarized current in
noncollinear MTJ can transfer spin angular momentum from
the carriers to the ferromagnet and alter the orientation of the
corresponding magnetization at sufficiently high current den-
sity, even in the absence of an applied field. This phenom-
enon, known as spin-transfer torque, has since been exten-
sively studied both theoretically23–29 and experimentally.30–35

A demonstration of the spin-transfer phenomenon is the
current-induced magnetic switching �CIMS�, which has now
been confirmed in numerous experiments in MTJs.36,37 Thus,
CIMS provides a powerful new tool for the study of spin
transport in magnetic nanostructures. Moreover spin-transfer
torque can drive nanoscale microwave oscillators.38–40

While the presence of the spin torque has been unambigu-
ously observed, its quantitative behavior in a MTJ, especially
its bias dependence, has not been understood in detail and
remains controversial.32–35 The spin torque can be decom-
posed into a fieldlike component, T�, and a spin-transfer
component, T�, both orthogonal to the magnetization of the
free FM, where the first �latter� are perpendicular �parallel� to
the plane of the magnetizations of the left and right FM
leads, but with different bias behavior. While experiments
indicate31–35 that the sign of the spin-transfer component, T�,
reverses sign on changing the current direction, we have re-
cently predicted an anomalous bias behavior,24 where T� can
exhibit a sign reversal without a corresponding sign reversal
of the bias or even a quadratic bias dependence. Thus, there
is pressing need in understanding the origin in the electronic
structure responsible for the bias behavior of the spin-
transfer torque and its relation to TMR, in order to pave the
way for new technological applications.41

In this work, we present a comprehensive study of the
bias behavior of the spin-transfer torque and the TMR, using
the one-band tight-binding �TB� model and the nonequilib-
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rium Keldysh formalism. The purpose is to give an extended
discussion of the theory presented in Ref. 24, where we pre-
sented a brief summary of our results. Here, we provide a
detailed investigation of the effect of band filling and ex-
change splitting of the FM leads on the bias behavior of T�,
T�, and TMR. We demonstrate that the spin-transfer torque
can exhibit a wide range of interesting and unusual bias be-
havior, which can be understood in terms of the dependence
of the spin and charge currents on the interplay between the
evanescent states of the insulator and the Fermi surfaces of
the FM electrodes. On the other hand, we find that the bias
dependence of T��V� is quadratic with d2T� /dV2�0. Inter-
estingly, we find that, depending on band filling and the ex-
change coupling, T� can change sign at finite bias. This may
have important practical implications since it suggests that
the interlayer exchange coupling �IEC� in MTJ may be tuned
with bias.42,43 Finally, we show that the TB parameters may
have a large effect on the bias dependence of the TMR.

This paper is organized as follows: Section II describes
the method used to model the MTJ and to calculate the spin-
transfer torques. Numerical results for the bias dependence
of T�, T�, and TMR are presented in Secs. III A–III C, re-
spectively. Finally, conclusions are summarized in Sec. IV.

II. METHODOLOGY

The MTJ, shown in Fig. 1, consists of a left and right
semi-infinite noncollinear FM leads, separated by a nonmag-
netic insulating spacer containing N atomic layers. The mag-
netization, M�, of the right FM lead is along the z axis of the
coordinate system shown in Fig. 1. The magnetization, M, of
the left FM lead lies in the x-z interfacial plane, i.e., it is
rotated by the angle � around the axis y �normal to the FM/B
interfaces� with respect to M�.

The Hamiltonian for the MTJ system is described by the
single orbital simple-cubic TB Hamiltonian, which is the
sum of the Hamiltonian of the isolated left �L� and right �R�
leads, the barrier �B�, and the interaction between the left and
right leads with the barrier. Namely,

H = HL + HR + HB + Hint, �1�

where

HL = �
�;�

��
�c�

�†c�
� + �

�;�,�
t��
� c�

�†c�
� , �2�

HR = �
�;��

���
� c�

�†c��
� + �

�;��,��

t����
� c��

�†c��
� , �3�

HB = �
i

�ici
†ci + �

i,j
tijci

†cj , �4�

and

Hint = �
�

�ta�
� ca

�†c�
� + tb��

� cb
�†c��

� + hc� . �5�

Here, the Greek primed �unprimed� subscripts denote atomic
sites in the right �left� FM leads in Fig. 1, respectively, the
Latin subscripts denote the sites in the nonmagnetic B

spacer, the last �first� site in the left �right� lead next to the
left �right� interfaces are denoted by �����, while the first
�last� site in B are denoted by a�b�. c�

��c�
�†� annihilates �cre-

ates� an electron on site � with spin �, ��
���i� are the spin-

dependent �independent� on-site energies in the lead �bar-
rier�, and t��

� �tij� is the spin-dependent �independent�
hopping matrix element between sites ��i� and ��j� in the
lead �B�.

The treatment of the charge- and spin-transport properties
of the MTJ is based on an extension of the Keldysh
formalism44 to the case of noncollinear magnetization be-
tween the left and right FM leads, which can be described
using 2	2 matrices in spin space. The one-electron
Schrödinger equation for the spin-dependent retarded

Green’s function, gpq
���, for each uncoupled region 
=L, R

and B, can be written as

�
p1

p,q,p1�


���E − �k�
��pp1

− H̄pp1
�Î − �Hpp1

	 	cos � sin �

sin � − cos �

�	gp1q

↑↑ gp1q
↑↓

gp1q
↓↑ gp1q

↓↓ 
 = �pqÎ , �6�

where p and q denote atomic sites in the uncoupled region

x
b
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zyI

s
yyI
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FIG. 1. �Color online� �top� Schematic structure of the MTJ,
consisting of left and right semi-infinite FM leads separated by a
thin nonmagnetic insulating barrier containing N atomic layers. The
magnetization M� of the right FM lead is along z, whereas the
magnetization M of the left lead is rotated by an angle � around the
y axis with respect to M�. The Greek primed �unprimed� letters
denote atomic sites in the right �left� FM leads, respectively, and the
Latin letters denote the sites in the barrier. �bottom� Schematic il-
lustration of the potential profile, where the spin-resolved density of
states in the FM leads have an exchange spin splitting of 2
. The
�↑, �↓, and �B are the on-site energy levels of the majority and
minority bands, and the barrier, respectively. The lower dashed line
indicates the Fermi level in equilibrium.
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, �k�
is the energy of the in-plane wave vector, k�, of the

Bloch state, and Î is the 2	2 unit matrix. The quantities

H̄pq = �

0 �pq + t


0 ��p,q+1 + �p,q−1� �7�

and

�Hpq = 

�pq + 


t ��p,q+1 + �p,q−1� �8�

describe the spin-averaged and the spin-split parts of the
Hamiltonian, respectively, where, �


0 = ��

↑ +�


↓ � /2, t

0 = �t


↑

+ t

↓ � /2, 

= ��


↓ −�

↑ � /2, and 



t = �t

↑ − t


↓ � /2.
In order to reduce the set of TB parameters, we consider

only nearest-neighbor �NN� spin-independent off-diagonal
hopping matrix elements, which are the same for both FM
leads, the barrier, and the FM/B interfaces, i.e., t


� = ta�
�

= tb��
� = t. Furthermore, we consider identical FM leads �sym-

metric MTJ� with 
L�R�= ��L�R�
↓ −�L�R�

↑ � /2, and 


t =
B=0.

Under applied bias, �R
� −�L

�=eV, and the potential inside the
insulator, �B,n=�B−eV n−1

N−1 varies linearly with the layer
number n.

The retarded 2	2 Green’s function, Gpq
���, of the entire

coupled system can be determined by solving a system of
coupled Dyson equations of the form

Ĝpq = ĝpq + ĝpa�̂aaĜaq + ĝpb�̂bbĜbq, �9�

which take into account the propagation of the electron
across the FM-B interfaces. A similar equation can be written

for the advanced Green’s function, Ĝ̃pq, with ĝpq being re-
placed with ĝ̃pq. Here, ĝ is the 2	2 propagator of each un-
coupled region determined from Eq. �6�, and the self ener-
gies at sites a and b are

�̂aa = tĝ��t, �̂bb = tĝ����t . �10�

Solution of the system of coupled Dyson Eqs. �9� yields

analytical expressions for Ĝpq. For example, the spin diago-
nal and off-diagonal matrix elements of the advanced
Green’s function inside the barrier are

Gab
↑↑ =

gab

D↑�1 − P��aa
↓↑�2/D↑D↓�

�11�

and

Gab
↓↑ =

gab�aa
↓↑��1 − gbb�bb

↑↑�gaa + gabgba�bb
↑↑�

D↑D↓ − P��aa
↓↑�2 . �12�

Here,

D↑�↓� = �1 − gaa�aa
↑↑�↓↓���1 − gbb�bb

↑↑�↓↓�� − gabgba�aa
↑↑�↓↓��bb

↑↑�↓↓�

�13�

and

P = �gabgba�bb
↑↑ + gaa�1 − gbb�bb

↑↑��

	�gabgba�bb
↓↓ + gaa�1 − gbb�bb

↓↓�� . �14�

Note, that gab is spin independent because the barrier is non-
magnetic. The expressions for Gab

↓↓ and Gab
↑↓ are similar to

those above, where �↑↑ and �↓↑ are replaced with �↓↓ and
�↑↓.

The kinetic equation for the nonequilibrium 2	2 Green’s
function matrix, derived from the Keldysh formalism,45 is

F̂pq = f̂ pq + ĝpq1
�̂q1q2

F̂q2q + f̂ pq1
�̂q1q2

Ĝ̃q2q, �15�

where f̂ is the nonequilibrium 2	2 Green’s function matrix
for the uncoupled leads and the barrier, and the self-energy is

�̂q1q2
= tÎ��q1��q2a + �q1���q2b� + hc . �16�

This form of self-energy arises because the perturbation of
the barrier/leads interaction �5� is instantaneous.44

Since we are interested in evaluating the spin torque on
the right lead we need to determine F����, where sites �� and
���R. Thus, the above equation becomes44

F̂���� = f̂���� + ĝ����tF̂b�� + f̂����tĜ̃b��. �17�

Because the various F̂’s are coupled, one needs to write simi-

lar kinetic equations for F̂b��, F̂���, F̂����, and F̂a��, which
are of the form

F̂b�� = ĝbatF̂��� + ĝbbtF̂���� + f̂ batĜ̃��� + f̂ bbtĜ̃����,

�18�

F̂��� = ĝ��tF̂a�� + f̂��tĜ̃a��, �19�

F̂���� = f̂���� + ĝ����tF̂b�� + f̂����tĜ̃b��, �20�

and

F̂a�� = ĝaatF̂��� + ĝabtF̂���� + f̂ aatĜ̃��� + f̂ abtĜ̃����.

�21�

The vanishing of the density of states of the uncoupled
barrier within the energy gap, where the electron-tunneling
process occurs, implies that the Green’s functions inside the
barrier are real,

ĝpq = ĝ̃pq = ĝpq p,q � B , �22�

and f̂ pq=0 when p ,q�B. The nonequilibrium Green’s func-
tion matrix for the uncoupled left and right leads at local
equilibrium are

f̂�� = �1 − 2fL��ĝ�� − ĝ̃��� , �23�

and

f̂���� = �1 − 2fR��ĝ���� − ĝ̃����� , �24�

where fL and fR are the Fermi-Dirac distribution function in
the isolated left and right leads. Thus, the self-consistent Eqs.
�17�–�21� become

SPIN-TRANSFER TORQUE IN MAGNETIC TUNNEL… PHYSICAL REVIEW B 79, 174416 �2009�

174416-3



�
F̂���� = f̂���� + ĝ����tF̂b�� + f̂����tĜ̃bbtĝ̃����

F̂b�� = ĝbatF̂��� + ĝbbtF̂����

F̂��� = ĝ��tF̂a�� + f̂��tĜ̃abtĝ̃����

F̂���� = f̂���� + ĝ����tF̂b�� + f̂����tĜ̃bbtĝ̃����

F̂a�� = ĝaatF̂��� + ĝabtF̂����.


 �25�

Solving the system of linear Eqs. �25� gives

F���� = F����
left + F����

right , �26�

where

F̂����
left = ĝ����t�Den

̂

�−1ĝbat�ĝ��t�Î − ĝaatĝ��t�−1ĝaat + Î�

	 f̂��tĜ̃abtĝ̃���� �27�

and

F̂����
right = f̂���� + f̂����tĜ̃bbtĝ̃���� + ĝ����t�Den

̂

�−1

	�ĝbatĝ��t�Î − ĝaatĝ��t�−1ĝab + ĝbb�

	t� f̂���� + f̂����tĜ̃bbtĝ̃����� . �28�

Here,

Den
̂

= Î − ĝbbtĝ����t − ĝbatĝ��t�Î − ĝaatĝ��t�−1ĝabtĝ����t .

�29�

Having determined the F̂pq, the Keldysh Green’s function
is45

Ĝpq
� =

1

2
�F̂pq + Ĝ̃pq − Ĝpq� . �30�

Finally, the charge and spin-current density are

I =
et

2��
� Tr��Ĝp+1,p

��,�� − Ĝp,p+1
��,���dEdk� , �31�

Ip,p+1
s =

t

4�
� Tr���Ĝp+1,p

��,�� − Ĝp,p+1
��,�����dEdk� , �32�

respectively, where �= ��x ,�y ,�z� is a vector of the Pauli
matrices.

While in general the spin current is a tensor,46 in our case
only the Ixy

s , Iyy
s , and Izy

s �see Fig. 1� components are nonzero
because the transport is along the y direction. In contrast to
the charge current, I, which is conserved across the MTJ, the
spin current, Is, is not conserved due to the local exchange
field inside the FM leads,46 i.e., � ·Is�0. Due to conserva-
tion of the total angular momentum, the spin current lost at
an atomic site is transferred to its local magnetic moment,
thereby exerting a local spin-transfer torque46,47 T�� on site
�� in the right FM lead, given by

T�� = − � · Is = I��−1,��
s − I��,��+1

s , �33�

where the second equality represents the discrete form of the
divergence of the spin current. The z component of T�� van-
ishes because Iz���,��+1�

s = Iz���−1,���
s = �� /2e��I↑− I↓�, where

I↑�↓� is the majority �minority� charge current given by the
diagonal matrix elements in Eq. �31�. Note, the charge and
spin-current densities Eqs. �31� and �32� are calculated in
A/� and eV/�, where � denotes the interfacial unit area.

Using Eq. �33�, one can determine the net spin-transfer
torque on the right FM lead �transverse to the magnetiza-
tion�, as the sum of local torques,

T = �
��=0

�

�I��−1,��
s − I��,��+1

s � = I−1,0
s − I�,�

s = I−1,0
s . �34�

Here the subscripts −1 and 0 refer to the last site inside the
barrier and the first site in the right FM lead, respectively. In
the above equation, I�,�

s =0 because the components of
I��,��+1

s transverse to M� decay to zero as ��→�.48,49 Thus,
the total spin torque exerted on the right FM lead is simply
the spin current at the I/FM interface.46 The fieldlike, T�, and
spin-transfer, T�, components of the spin torque on the right

FM lead, shown in Fig. 1, are along the M̂�	 �M̂	M̂�� and

M̂	M̂� directions, respectively, where M̂ �M̂�� are the unit
vectors along the magnetization direction of the left �right�
lead, respectively.

III. RESULTS AND DISCUSSION

In a recent paper we presented a brief summary of the
anomalous bias dependence of the spin torque in MTJ.24

Here we provide a fuller account of the results including the
bias dependence of the TMR. We vary two model param-
eters, the spin-averaged on-site energy, �0= ��↑+�↓� /2,
which controls the band filling and the exchange splitting,

= ��↓−�↑� /2. The NN hopping matrix element, t=−1 eV,
in all regions, �B=9 eV, the Fermi energy EF=0 eV, and
the number of barrier sites is N=3. The choice of the param-
eters including the hopping matrix element provides a real-
istic choice for systems based on magnetic transition metals
and their alloys.50,51 In order to increase the band filling, we
believe that different class of magnetic materials should be
suggested, for example, alloying Fe�Co� with impurities
which can fill up the majority 
1 band.

A. Voltage behavior of the spin-transfer torque

In Fig. 2 we display the bias dependence of the net spin-
transfer torque on the right lead, T�, for �=� /2, various val-
ues of 
 and for �0=3 ,0 ,−3 eV, corresponding to 1/4 �top
panel�, 1/2 �middle panel�, and 3/4 band filling �bottom
panel�, respectively. For the case of 3/4 filling, T� increases
monotonically both with bias and exchange splitting, with
�

�T�

�V �
�0 and �
�T�

�
 �V�0. On the other hand, for the half filled
case, while �

�T�

�V �
�0, T� increases with 
 up to the value of
about 4 eV and then decreases with further increase in 
.
Finally, for the 1/4 band filling the dependence of T� on both
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bias and exchange splitting is nonmonotonic, with the spin-
transfer torque reversing sign without a sign reversal of the
bias for low values of 
. Interestingly, for higher 
 values �3
and 4 eV�, the bias dependence renders monotonic with
�

�T�

�V �
�0. Thus, the bias behavior of T� shows a wide range
of unusual behavior depending on the band filling and ex-
change splitting, and is consistent with that observed in re-
cent experiments.32,33,52

We would like to point out here that the discrepancies in
the sign of the spin-transfer torques in the cited references, as
well as in a number of theoretical works,24,26–29 are just mat-
ters of sign convention, as was also noted in Ref. 27. In
addition, the slight bias asymmetry of the in-plane torque in
Ref. 33 can be explained by the possible intervention of the
minority electrons, which leads to deviation from the “half-
metallic”-like regime for which the variation in the parallel
torque is always monotonic �symmetric�. This is explained
further in the text and is clearly demonstrated in the top
panel in Fig. 6 by the curves denoted with open squares and
open circles, respectively. These two curves may represent
differences in observations reported in Refs. 32 and 33. Also
in our previous work,24 we did not include the curve corre-
sponding to the half-metallic case, which was obviously
symmetric in shape, similar to that reported in the ab initio
calculations by Heiliger et al.28

The mechanism responsible for the bias behavior of T�

can be understood by employing the generalized equivalent
circuit model for MTJ,23,24 where the parallel component of
the spin-transfer torque on the right lead has the universal
form

T� =
Iz

s�0� − Iz
s���

2
M̂� 	 �M̂ 	 M̂�� . �35�

This expression is general and independent of the details of
the electronic structure for thick barriers. Our numerical re-
sults both for the TB model and the free-electron model �not
presented here� confirm the validity of this relation for any
parameter set and bias. Here, Iz

s�0�= �

2e �I↑�0�− I↓�0�� and
Iz

s���= �

2e �I↑���− I↓���� are the spin-current densities along
the direction of M� for the FM and AF configurations, re-
spectively. This result is important because it reduces the
calculation of T���� simply to the evaluation of spin-current
densities for the FM and AF configurations,23,24 and is con-
sistent with those in spin valves.48

In order to elucidate the underlying mechanism respon-
sible for the bias dependence of T�, we display in Fig. 3 the
bias dependence of Iz

s�0� and Iz
s��� for the FM �solid sym-

bols� and AF �open symbols� orientations, respectively, for
various values of the exchange splitting and for �0=
+3,0 eV, corresponding to the top and middle panels of Fig.
2, respectively. One can clearly see that Iz

s�0��Iz
s���� is an odd

�even� function of bias for −1 V�V�1 V. We have
shown24 that this different bias behavior can be understood
on the basis of the Brinkman tunnel model53 for asymmetric
barriers, generalized so as to take into account both spin
channels. Namely, in the FM configuration, the majority and
minority electrons tunnel through a symmetric barrier but
with different barrier heights for each spin channel. On the
other hand, in the AF configuration, both spin channels tun-
nel through asymmetric barriers with the same average bar-
rier height, but with barrier asymmetry of opposite sign.24

FIG. 2. �Color online� Bias dependence of parallel spin-transfer
torque, T�, for �=� /2, various values of the exchange splitting 

and three values of the spin-averaged on-site energy �0, correspond-
ing to 1/4 �top panel�, 1/2 �middle panel�, and 3/4 filling �bottom
panel�, respectively.

FIG. 3. �Color online� Bias dependence of the spin-current den-
sity, Iz

s, for the FM �open symbols� and AF �closed symbols� con-
figurations, respectively, in Eq. �35�. Iz

s is displayed for various
values of the exchange interaction 
 and for �0= +3,0 eV, corre-
sponding to the top and middle panels of Fig. 2, respectively.
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Note, that for �0= +3 eV,
�Iz

s�0�
�V decreases as 
 increases and

reverses sign for 
=3 eV. Similarly, �
�2Iz

s���
�V2 � decreases with

increasing 
. In the half-metallic case �
=3 eV�, Iz
s��� van-

ishes identically for this bias range due to the absence of
minority states available for tunneling. Consequently, the
odd bias dependence of T� for �0= +3 eV and 
=3 eV
arises solely from the bias dependence of Iz

s�0�. On the other

hand,
�Iz

s�0�
�V increases with increasing 
 for �0=0 eV. Thus,

T� is an odd function of V when Iz
s�0�� Iz

s��� �for example in
the half-metallic case�, while the nonmonotonic behavior oc-
curs when Iz

s�0�� Iz
s���. The bias behavior of the spin torque

for the 3/4 band filling �not shown here� can be explained
similarly in terms of the interplay of the spin currents of the
FM and AF configurations, respectively.

These results raise the interesting question whether T� can
be an even function of bias in the opposite limit where
Iz

s�0�� Iz
s���. In Fig. 4 we plot the bias dependence of T� for

�=� /2 and fixed value of exchange splitting, but different
values of the spin-averaged on-site energy �0 corresponding
to different band filling. Namely, both the majority and mi-
nority bands are rigidly shifted, but with 
 kept fixed to 1 eV
�2 eV� in the top �bottom� panel. The bias dependence of the
corresponding longitudinal spin currents for the FM and AF
orientations, respectively, is shown in Fig. 5, for the same
values of 
 and �0 used in Fig. 4. One can note that for 

=1 eV upon increasing �0 �decreasing band filling� the bias
dependence of T� changes from monotonic ��0=−2,0 eV�,
to nonmonotonic ��0=2 ,4 eV�, and to purely quadratic ��0

=3.6 eV�. In the latter case, Iz
s�0��0 �solid black triangles

in top panel of Fig. 5� in this bias range, and T� is solely
determined by Iz

s���. Thus, the interplay between the odd or
even bias dependence of Iz

�s��0� and Iz
�s����, respectively, in

Eq. �35� is responsible for the bias dependence of T� in Figs.
2 and 4. This competition can be selectively tuned by vary-
ing 
 and the band filling ��0�, giving rise to a wide range of
bias behavior. The monotonic bias dependence of T� for the
case of half-filling �middle panel in Fig. 2� is due to the spin
current of the FM configuration, Iz

s�0�, which dominates over
that of the AF configuration.

Figure 6 displays the bias dependence of T� for �=� /2,
for �↑= +3 eV �top panel�, 0 eV �middle panel�, and −3 eV
�bottom panel�, corresponding to 1/4, 1/2, and 3/4 band fill-
ing, respectively, and for various values of �↓. In contrast to
Figs. 2 and 4, where both the majority and minority bands
were rigidly shifted but where either �0 or 
 was fixed, in
Fig. 6 we examine the effect of the rigid shift of the minority
band only, where both �0 and 
 change simultaneously.
Similarly to Figs. 2 and 4, the bias behavior of the spin-
transfer torque exhibits a wide range of behavior, including a
purely quadratic one for �↑= +3 eV and �↓= +4.2 eV, cor-
responding to �0=3.6 eV and 
=1.2 eV.

Overall, the results indicate that dIz
s�0� /dV�0 for �0

�3.6 eV and dIz
s�0� /dV�0 for �0�3.6 eV, except for the

case of low band filling ��0= +3 eV� and 
�3 eV �top
panel in Fig. 3�, where dIz

s�0� /dV�0. In order to elucidate
the origin in the electronic structure responsible for the bias
dependence of the longitudinal spin current, Iz

s�0�, for the FM
orientation shown in Figs. 3 and 5, we plot in Fig. 7 the
non-spin-polarized current as a function of the spin-averaged
on-site energy level, �0, for several bias values. Interestingly,
for all biases the charge current exhibits a maximum at about
�max

0 =3.6 eV, where Iz
s�0� vanishes also. Since the spin-

polarized case can be derived from the non-spin-polarized

FIG. 4. �Color online� Bias dependence of parallel spin-transfer
torque, T�, for �=� /2, various values of the spin-averaged on-site
energy �0 and for exchange splitting of 
=1 eV �top panel� and

=2 eV �bottom panel�.

FIG. 5. �Color online� Bias dependence of the longitudinal spin-
current density, Iz

s, in Eq. �35� for FM �closed symbols� and AF
�open symbols� configurations, respectively, for various values of 

and the spin-averaged on-site energy �0, corresponding to those in
Fig. 2.
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one by adding or subtracting 
 to �max
0 , i.e., �↑�↓�=�max

0 �
,
the vanishing of Iz

s�0� results from the fact that I is symmetric
about �max

0 , at least for small 
, yielding I↑�0�= I↓�0�. This
result is valid up to an exchange-splitting value at which the
leads become half-metallic, i.e., �0�
�EF+6�t�. Figure 7
also explains the fact that for all cases with �0�3.6 eV
��0�3.6 eV�, dIz

s�0� /dV�0 �dIz
s�0� /dV�0�.

In order to understand the underlying mechanism respon-
sible for the variation in the charge current, I, with �0, we
display in Figs. 8�a�–8�c� the k�-resolved charge current at
EF=0 eV and at 0.1 V bias, for three values of �0 of −3, 0,
and +3 eV, respectively. Here, k� is the in-plane wave vector
in the two-dimensional surface Brillouin zone �BZ�. Interest-
ingly, the maximum value of the current for 1/4 filling ��0

= +3 eV� occurs in the vicinity of k� =0, with the maximum
value shifting toward the edges �kx�kz��� of the BZ as the

band filling increases to 3/4 ��0=−3 eV�. For the case of 1/2
filling ��0=0 eV� the maximum current value occurs at kx

�kz� 2�
3 . It is important to note that the current decreases by

about two orders of magnitude as the band filling increases
from 1/4 to 3/4.

The variation in the k�-resolved current at EF with �0 can
be explained by the interplay between the electrode states at
the interface and the evanescent states in the barrier. For the
simple-cubic TB Hamiltonian in Eq. �1� the zero-bias trans-
mission probability at EF=0 eV is of the form21,54,55

T�k�� = �Tint�k���2e−2Nqya =
4 sinh2 qya sin2 kya

�cosh qya − cos kya�2e−2Nqya,

�36�

where

cos�kya� = − �0/2t − cos kxa − cos kza ,

cosh�qya� = − �B/2t − cos kxa − cos kza . �37�

Equation �36� represents the TB analog of the generalized
Julliére model for free electrons,21,54,55 where the tunneling
transmission factorizes into the product of two interfacial
transmission functions, Tint, �identical for a symmetric bar-
rier� and the exponential decay factor associated with the
barrier. The k�-resolved zero-bias transmission probability at
EF evaluated from Eqs. �36� and �37� is plotted in Figs.
8�d�–8�f� for the same values of �0 of −3, 0, and +3 eV,
respectively. Overall, the agreement between the k�-resolved
current and the k�-resolved transmission probability is very
good.

Since t=−1 eV in both the leads and the barrier, the ex-
ponential factor has its maximum value at k� =0. On the
other hand, according to Eqs. �36� and �37�, the projection of
the Fermi surface on the BZ allows tunneling of only certain
type of interfacial states depending on �0. These are located
around k� =� ,� /2, and 0, for �0=−3, 0, and +3 eV, respec-
tively, i.e., the value of �k�

�max�� at which Tint reaches its maxi-
mum value decreases with decreasing �increasing� band fill-

FIG. 6. �Color online� Bias dependence of parallel spin-transfer
torque, T�, for �=� /2, various values of the minority on-site energy
�↓, and for three values of the majority on-site energy �↑, corre-
sponding to 1/4 �top panel�, 1/2 �middle panel�, and 3/4 band filling
�bottom panel�, respectively.

FIG. 7. �Color online� Charge current density versus on-site
energy �0 for several values of applied voltage.

FIG. 8. �Color online� ��a�–�c��: k�-resolved current in the two-
dimensional BZ, calculated from Eq. �31�, at EF=0, for 0.1 V bias,
and for �0 of −3, 0, and +3 eV, respectively. ��d�–�f��: Correspond-
ing zero-bias k�-resolved transmission probability, calculated from
the simplified Eq. �36�, for the same �0 values.
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ing ��0�. Therefore, the most favorable tunneling is for �0=
+3 eV, since both the exponential factor and Tint are maxi-
mum at k� =0. On the other hand, the density of interfacial
states, Nint�EF�, at EF reaches a maximum at half-filling.
Consequently, the maximum value in the total k�-integrated
current as a function of �0 in Fig. 7 results from the interplay
of Nint�EF�, the maximum value of Tint at �k�

�max��, and the
maximum of the decaying factor at k� =0.

B. Voltage dependence of perpendicular spin-transfer torque

In Fig. 9 we show the bias dependence of the perpendicu-
lar component of the net spin torque, T��V�, for �=� /2,
various values of the exchange splitting and for �0= +3, 0,
and −3 eV. We find that T��V� varies quadratically with
bias, as originally suggested, but not calculated, by

Slonczewski,23 and with �
d2T��V�

dV2 ��0 for any value of band
filling and exchange interaction.24,42 These results are consis-

tent with those of recent experiments.32,33 Note, that �
d2T��V�

dV2 �
depends sensitively on both 
 and the band filling. For ex-
ample, for 1/4 filling and large exchange splitting �

=4 eV� �

d2T��V�
dV2 ��0. The zero-bias value of T��0�, related

to the equilibrium interlayer exchange coupling �IEC�,21 de-
creases monotonically �nonmonotonically� with increasing 

for 3/4 �1/2 and 1/4� filling. At half-filling, T��0 for 

�2 and low bias, and changes sign at larger bias, in contrast
to the 1/4 and 3/4 band filling, where T� remains negative
for any bias. This bias-induced change of sign42,43 of the
nonequilibrium IEC may have important practical applica-
tions in controlling the sign of the IEC via bias.

In Fig. 10 we display the bias dependence of T�, for �
=� /2, various values of �0 and for 
=1 eV �top panel� and

=2 eV �bottom panel�, respectively. In all cases we find

that T��V�=T��V=0�− �
d2T��V�

dV2 �V2. Similarly with Fig. 9 we
find that the sign of T��V=0� and the bias behavior of the
IEC depend on both 
 and band filling.

C. Voltage dependence of TMR

One of the main well-known shortcomings of MRAM is
the large decrease in TMR with applied bias voltage. The
bias dependence of TMR can be expressed by a characteris-
tic voltage, V1/2, at which the zero-bias TMR value is halved.
A high value of V1/2 or equivalently a slow decrease in TMR
with V is desirable for device applications.10 While earlier
experiments56 found that V1/2�0.2–0.3 V, more recently
higher values of V1/2 of about 0.5–0.6 V have been
reported.57

In this section, we present the effect of the TB parameters
�
 and �0� on the bias behavior of the TMR. Note that in the
half-metallic case, TMR→� since IAF→0. All figures below
show the bias behavior of TMR only for V�0 since the
TMR is an even function of bias for symmetric MTJs.

In Fig. 11 we show the bias dependence of the TMR for
fixed �0=3, 0, and −3 eV corresponding to 1/4 �top panel�,
1/2 �middle panel�, and 3/4 band filling �bottom panel�, re-
spectively, and for various values of 
. We find the well-
known result that the TMR decreases with increasing bias.
This can be seen more clearly in the insets of Fig. 11, where
the TMR normalized to its low-bias value,
TMR�V� /TMR�V�0�, is plotted versus bias. This is consis-
tent with previous theoretical17,18 and experimental9–13 re-

FIG. 9. �Color online� Bias dependence of perpendicular spin-
transfer torque, T�, for �=� /2, various values of the exchange
splitting 
, and three values of the spin-averaged on-site energy �0,
respectively.

FIG. 10. �Color online� Bias dependence of perpendicular spin-
transfer torque, T�, for �=� /2, various values of the spin-averaged
on-site energy �0, and for 
=1 eV �top panel� and 
=2 eV �bot-
tom panel�, respectively.
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sults. For fixed �0, the TMR increases �note the logarithmic
scale for the TMR� with increasing 
 due to the decrease in
I���, in contrast to the more complex dependence of T� with

 shown in Fig. 2. Thus, we find that the TMR and spin-
transfer torque are not correlated. The TMR increases as 
2

�exponentially� for small �large� values of 
. At half-filling
��0=0 eV�, the normalized TMR decreases weakly with
bias, independently of the value of 
 with a high value of
V1/2�1 V, which is about twice the experimental value for
clean MTJs. On the other hand, for 1/4 and 3/4 band filling
�top and bottom panel insets of Fig. 11�, there is a weak
�sharp� decrease in the normalized TMR with increasing bias
for 
 of 1 eV �2 eV�, where V1/2 is about 1 V �0.2 V�,
respectively. Thus, these results suggest that for symmetric
ideal TMJ without disorder and in the absence of magnon
excitations, the 1/2 filling is the optimum value for achieving
high values of V1/2, which are also robust with respect to
variations in the exchange splitting.

In Fig. 12 we show the bias dependence of TMR for fixed
value of 
 and different values of �0, corresponding to dif-
ferent values of band filling. For small exchange splitting,

=1 eV, the TMR is about of the same order of magnitude
for any value of �0 and decreases weakly with bias as can be
seen clearly in the inset, thus yielding large values of V1/2
�1 eV. On the other hand, for 
=2 eV, the TMR de-
creases by several orders of magnitude with increasing �de-
creasing� �0 �band filling�. Furthermore, the normalized
TMR decreases sharply with bias for any �0, yielding low
values for V1/2�0.2 V, in agreement with earlier
experiments.56 Thus, as for the case of the spin-transfer
torque, the TMR and its bias behavior can be selectively
tuned with the exchange splitting and the band filling.

IV. CONCLUSION

In conclusion, we have employed out tight-binding elec-
tronic structure calculations and the nonequilibrium Keldysh
formalism to study systematically the effect of exchange
splitting and band filling on the bias behavior of the fieldlike,
T�, and spin-transfer, T�, components of the spin torque, and
the TMR in symmetric MTJ. We find that both components
of the spin-transfer torque and the TMR exhibit a wide range
of interesting and unusual bias behavior.

We predict a nonmonotonic bias dependence of the spin-
transfer component of the torque, contrary to the general
consensus, where T� may change sign without a sign reversal
in bias or current, and it may even have an unexpected qua-
dratic bias dependence. By generalizing the equivalent cir-
cuit in Refs. 23 and 24 using angular-dependent resistances,
we show that T� satisfies an expression involving the differ-
ence in spin currents between the FM and AF configurations.
The spin-current density for the FM �AF� alignment is shown
to have a linear �quadratic� bias dependence, whose origin
lies in the symmetric �asymmetric� nature of the barrier. The
interplay of the spin currents for the FM and AF configura-
tions is the key underlying mechanism that leads to a rich
behavior of the STT on bias. It should be emphasized that the
nonmonotonic bias behavior is not associated with the
simple TB model; other systems with more complex elec-
tronic structures can also show this behavior, provided that
the condition Iz

s�0�� Iz
s��� is satisfied.

On the other hand, we find that the bias dependence of T�

is purely quadratic, T��V�=T��V=0�+ �
d2T��V�

dV2 �V2, in the
−1 V�V�1 V bias range with d2T� /dV2�0, independent
of exchange interaction and band filling. These results are

S

FIG. 11. �Color online� Bias dependence of TMR for various
values of exchange splitting 
 and for three values of the spin-
averaged on-site energy, �0, corresponding to 1/4 �top panel�, 1/2
�middle panel�, and 3/4 �bottom panel� band filling. Insets display
the bias dependence of TMR normalized to its low-bias value,
TMR�V� /TMR�V�0�.

FIG. 12. �Color online� Bias dependence of TMR for various
values of the spin-averaged on-site energy �0 and for two values of
exchange splitting of 
=1 eV �top panel� and 
=2 eV �bottom
panel�, respectively. Insets display the bias dependence of TMR
normalized to its low-bias value, TMR�V� /TMR�V�0�.
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consistent with recent experiments.32,33 The zero-bias value
of the IEC, T��V=0�, and d2T� /dV2 depend both on the
exchange splitting and the band filling. Interestingly, at or
close to half-filling and for large exchange splitting T��V�
changes sign at finite bias, which suggests that the IEC in
MTJ may be tuned with bias. The TMR is found to decrease
with increasing applied bias voltage but is not correlated
with the bias behavior of the spin-transfer torque. The char-
acteristic voltage, V1/2, at which the zero-bias TMR value is
halved can be selectively tuned with the exchange splitting
and the band filling. The half-filling is the optimum value for
the single-band TB model for achieving high values of V1/2,
which are also robust with respect to variations in the ex-
change splitting.
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